If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29n^2-31n=0
a = 29; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·29·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*29}=\frac{0}{58} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*29}=\frac{62}{58} =1+2/29 $
| .3(x+21)=12 | | 29n^2–31n=0 | | 16x2-121=0 | | 29n2–31n=0 | | 11j=21 | | f+11=17+2 | | 9g=10g−6 | | -4k+7=-5k | | 12n+1=-46 | | 3×y=21 | | -12=-2k-3k=-12 | | -3t+3=-4t | | -8q=-4-9q | | 6=c+6 | | x^-4x=1 | | -8-9d=-7d | | 14(^3n)-1=23 | | x+2,6=9,3 | | 14^(3n)-1=23 | | x=−9÷3 | | Y=25x^2+9x-30 | | -5-4-2m)=90 | | 3/8g=27 | | 5/6(n-2)=-5 | | x^-4x+4=2x-1 | | 14^3n-1=23 | | 5x÷2(1-x)=2(2x-1) | | X-2=7x+8x-5 | | 2 = h3− 2 | | 2 = h/3− 2 | | x+8,4=30 | | 13x+1=6x+78 |